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A time domain method for the extraction of the structural system matrices (mass,
damping and sti!ness matrices) from an identi"ed state-space system is proposed in this
paper using the combined measurements of displacement, velocity and acceleration (DVA)
together with the input excitations. The method is based on the invariance of
continuous-time Markov parameters. An explicit expression of the relationship between the
continuous-time Markov parameters, the structural system matrices, and the in#uence
matrices for output DVA as well as the input force has been derived. The determination of
structural system matrices is also valid when only the displacement, velocity or acceleration
responses are measured. In this paper, the equivalent state system matrices are obtained by
an algorithm, which combines the eigensystem realization algorithm (ERA) and the
autoregressive with exogeneous (ARX) model. The ARX model provides the necessary
discrete-time Markov parameters from the measured input and output data, and then the
equivalent state system matrices are identi"ed from discrete-time Markov parameters by
using the ERA. A lumped mass model with three degrees of freedom is employed to illustrate
the accuracy and feasibility of the presented method.
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1. INTRODUCTION

The development of accurate mathematical models for the identi"cation of the dynamic
characteristics of complex structures is a topic with broad-ranging applications. Examples
of applications include naval architecture, ocean engineering, aircraft spacecraft,
mechanical, and civil engineering structures. The most popular approaches in the "eld of
structural system identi"cation are the physical and modal models. The modal model
de"nes the dynamic behaviors of structures in terms of natural frequencies, damping ratios
and mode shapes. Applications of modal model for updating an analysis model or for
detecting structural damage have been studied in various engineering "elds [1}7]. The
physical model, also called spatial model [8], is characterized by the structural system
matrices (M, E, K), which are the mass, damping and sti!ness matrices respectively. Because
the mode shapes are not uniquely de"ned, Baruch [9] showed that even full modal data are
insu$cient for the identi"cation of both mass and sti!ness matrices. The modal model
estimated from vibration responses with unknown input force, cannot be transformed
directly into the physical model.

In recent years, various methods for the identi"cation of structural system matrices have
been developed. Chen et al. [10, 11] presented a frequency-domain method to estimate the
0022-460X/02/050955#16 $35.00/0 ( 2002 Academic Press
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system matrices of structure directly from receptance FRFs, which were estimated from
displacement response. Alvin et al. [12] and Yuan et al. [13] determined mass and sti!ness
matrices from modal test data. The methods used in these papers were based on the normal
modal data, and the damping matrix was not evaluated. Okuma et al. [14] developed
spatial matrices from complex modal data, which were estimated from accelerance FRFs.
Juang and Pappa [15, 16] developed the eigensystem realization algorithm (ERA) to
estimate the natural frequencies and damping ratios of a dynamic system from the known
Markov parameters. Yang and Yeh [17] employed the ERA to identify the system matrices
of a vibrating structure from the displacement-based Markov parameters, which were
estimated from measured displacement responses together with the excitation forces.
Chaudhary et al. [18] proposed a two-step method, the former is the estimation of complex
modal parameters using system realization theory from seismic records, and the latter is the
identi"cation of structural parameters from the estimated complex modes for identifying the
physical model of two base-isolated bridges. In the aforementioned papers, only a single
type of sensor was used, the combined measurement of displacement, velocity and
acceleration (DVA) has not been found. In some modal testing circumstance, di!erent types
of sensors may be used for the identi"cation of structural models. Hung et al. [19]
developed a transformation method for extracting the modal parameters from the
combined measurements of DVA under unknown input force. In this paper, a time domain
method for the extraction of mass, damping and sti!ness matrices from an identi"ed
continuous-time state-space system has been developed using the combined measurements
of DVA together with the input excitation. An explicit expression based on the invariant
principle of continuous-time Markov parameters using the combined DVA data for
determining the structural system matrices has been derived. In this paper, the ERA method
developed by Juang and Pappa [15, 16, 20] is employed to obtain an equivalent state-space
system. Because the Markov parameters used in the ERA method cannot be measured
directly in a vibration test, an autoregressive with exogeneous (ARX) model is used in this
paper to obtain the necessary Markov parameters from the combined DVA output
response data together with the input forces.

2. STATE-SPACE REPRESENTATION OF STRUCTURAL SYSTEM

The equations of motion for a linear-elastic structure with n degrees of freedom (d.o.f.) can
be expressed in matrix form as

MxK (t)#ExR (t)#Kx (t)"B
0
u (t), (1)

where t is the continuous time, x (t)3Rn]1 is the displacement vector, u (t)3Rr]1 is the
excitation force vector, B

0
3Rn]r is the input in#uence matrix describing the measure

locations of excitation forces vector, M3Rn]n is the positive-de"nite mass matrix, E3Rn]n

is the positive semi-de"nite damping matrix, and K3Rn]n is the positive semi-de"nite
sti!ness matrix. The dot indicates di!erentiation with respect to time. In the practical
experimental identi"cation of dynamic characteristics of structures, not all of the degrees of
freedom are observed. Therefore, there exists a measurement system with l sensors under
a prescribed arrangement for measuring the dynamic response of structures. If the sensors of
displacement, velocity, and acceleration are arranged on di!erent locations to measure the
dynamic responses simultaneously, then the combined output equation of the structural
system for DVA measurements can be written as [20]

y (t)"C
d
x(t)#C

v
xR (t)#C

a
xK (t), (2)
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where C
d
, C

v
, C

a
3Rl]n are the output in#uence matrices for the vectors of displacement,

velocity and acceleration respectively. After introducing a state vector,
z(t)"Mx(t) ; xR (t)N3R2n]1, the equations of motion for the physical model described by
equation (1) can be transformed into the following state equation of motion:

zR (t)"A
c
z(t)#B

c
u(t), (3)

where A
c
3R2n]2n is the system matrix, B

c
3R2n]r is the input matrix, and

A
c
"C

0 I

!M~1K !M~1ED , B
c
"C

0

M~1B
0
D . (4a,b)

Using the same de"nition of state vector, the output equation in equation (2) can be
transformed as

y(t)"Cz(t)#Du (t), (5)

where

C"[C
d
!C

a
M~1K C

v
!C

a
M~1E], D"C

a
M~1B

0
, (6a,b)

where C3Rl]2n is the output in#uence matrix for the state vector z (t), D3Rl]r is the direct
transmission matrix. The matrix D will disappear from equation (5) when accelerometers
are not used for output measurements. Equations (3) and (5) constitute a continuous-time
multiple input and multiple output (MIMO) state-space model for a "nite-dimensional
dynamic system. For convenience, a quadruplet, namely (A

c
, B

c
, C, D), stands for the

continuous-time physical state model to be used in this paper. The output responses of
equation (5) with non-zero initial conditions can be expressed in the following form [21]:

y (t)"CeAc(t~t0)z(t
0
)#P

t

0

h (t!q)u (q) dq, (7)

where z(t
0
) is the state vector at initial time t

0
, h (t)"CeActB

c
#Dd(t) is the impulse

response function (IRF), and d (t) is the Dirac delta function. The IRF characterizes the
dynamics of a structural system in the time domain and is independent of the output
responses and the excitation forces for a linear-elastic structural system. The IRF can be
expanded by power series as [21]

h(t)"CeActB
c
#Dd(t)

"

=
+
k/1

h
k

(k!1)!
tk~1#h

0
d (t), (8)

where

h
k
"G

D, k"0,

CAk~1
c

B
c
, k*1,

(9)

where h
k
3Rl]r is the kth coe$cient matrix of the power-series expansion of the IRF. The

collection of all these coe$cient matrices, i.e., h"Mh
0
, h

1
, h

2
,2N, is called the

continuous-time Markov parameters sequence [21]. Although the column and row
dimensions of the IRF for an experiment depend upon the number of output measurements
and input excitations, the type and magnitude of IRF depend on the structural system
characteristics, i.e., the mass, damping and sti!ness properties.
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3. EQUIVALENT DISCRETE-TIME STATE-SPACE MODEL

A discrete-time state-space system related to the continuous-time system can be obtained
through sampling and zero-order-hold procedure with sampling time Dt. The discrete-time
state equation and output equation can be written as

z
k`1

"A
d
z
k
#B

d
u
k
, y

k
"Cz

k
#Du

k
(10, 11)

and

A
d
"eAc

Dt, B
d
"(A

d
!I)A~1

c
B
c
, (12a,b)

where k is the integer discrete-time index at time instant t"kDt, z
k
is the state vector z (t) at

the discrete time k, u
k
is the force vector, y

k
is the output vector A

d
is the discrete state system

matrix, and B
d

is the discrete input in#uence matrix for the state vector z
k
. The output

matrix C and the direct transmission matrix D are unchanged during the zero-order-hold
operations [20]. The dimensions of the discrete system are equal to those of the continuous
system. A quadruplet written as (A

d
, B

d
, C, D) in discrete time can also be used to describe

equations (10) and (11) for convenience. The discrete-time Markov parameters can also be
de"ned in the same way as in continuous time

g
k
"G

D, k"0,

CAk~1
d

B
d
, k*1.

(13)

The identi"ed discrete-time quadruplet (A1
d
, B1

d
, C1 , D1 ) can be estimated from the measured

output responses and excitation forces by various approaches. Here, the variables with
superscript &&bar'' indicate the identi"ed properties from measured data.

We employ the ERA method to determine the discrete-time state-space system from the
estimated Markov parameters. The Markov parameters can be estimated by various
approaches. It is determined from an ARX model in this paper. In order to obtain accurate
vibration modes, the size of the state vector is over-speci"ed generally. Actually, the
over-speci"ed discrete-time state-space system is employed for "tting a set of measured
output responses and input excitations in practical cases.

The identi"ed continuous quadruplet (A1
c
, B1

c
, C1 , D1 ) that has the same size as the physical

model, can be estimated from the identi"ed discrete-time quadruplet (A1
d
, B1

d
, C1 , D1 ) by the

inverse computation of equations (12a) and (12b)

A1
c
(ln(A1

d
)/Dt, B1

c
"A1

c
(A1

d
!I)~1B1

d
. (14a,b)

The contents of the identi"ed quadruplet (A1
c
, B1

c
, C1 , D1 ) are generally not the same as the

physical quadruplet (A
c
, B

c
, C, D). If the state-space system is estimated from measured data

by an accurate and e!ective method, the identi"ed quadruplet is equivalent to the physical
model from the viewpoint of the continuous-time Markov parameters.

The ARX model with q-order, l-output and r-input to simulate an MIMO linear
time-invariant system can be written as

y
k
#

q
+
i/1

a
i
y
k~i

"b
0
u
k
#

q
+
i/1

b
i
u
k~i

#e
k
, (15)

where a
i
3Rl]1 and b

i
3Rl]r are the AR and X coe$cient matrices, respectively; e

k
3Rl]l is

an error vector which simulates the model errors and measurement errors. The coe$cient
matrices of the ARX model can be estimated by the prediction error method [22, 23]. After
the ARX model is identi"ed from the measured DVA output responses and the input
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excitations, the estimation of Markov parameters, g6
i
3Rl]r, in discrete time can be

computed through [24]

g6
0
"b1

0
, g6

i
"b1

i
!

i
+
j/1

a6
j
g6
i~j

, i"1, 2,2, p, (16a,b)

g6
i
"!

i
+
j/1

a6
j
g6
i~j

, i"p#1, p#2,2,R. (61c)

The order of the ARX model selected should be high enough to estimate the accurate
Markov parameters. The dynamic system described by equations (10) and (11) can be
identi"ed using the ERA with the Markov parameters in equations (16a)}(16c).

The procedure for obtaining the Markov parameters using an ARX model is actually an
observer Kalman "lter identi"cation (OKID) presented in references [25, 26]. In this paper,
the discrete-time Markov parameters are computed directly from the ARX model, and the
computation of observer's gain is not needed. In the ERA, we use the discrete-time Markov
parameters to construct a generalized block Hankel matrix, G (i!1)3Ral]br

G(i!1)"

g
i

g
i`1

2 g
i`b~1

g
i`1

g
i`2

2 g
i`b

F F } F

g
i`a~1

g
i`a 2 g

i`a`b~2

"CaAi~1
d

Ob , (17)

where

Ca"

C

CA
d

CA2
d

F

CAa~1
d

, (18)

Ob"[B
d

A
d
B

d
A

d
B2
d

2 A
d
Bb~1
d

], (19)

where a and b are integers; Ob3Rla]2n is the observability matrix, and Cb3R2n]br
is the controllability matrix. The ERA uses the singular value decomposition of
matrix G (0)

G (0)"CaOb"USVT"[U
1

U
2
] C

S
1

0

0 0 D C
VT

1
VT

2
D, (20)

where U3Rla]la and V3Rbr]br are orthogonal matrices; S3Ral]br is a matrix comprising
all singular values of G (0), S

1
is a non-singular diagonal matrix that contains all non-zero

singular values of G(0). The rank of G (0) is actually de"ned by the number of non-zero
singular values. U

1
and V

1
are the left partition of U and V, respectively, with respect to the

non-zero singular value. A minimal realization model, which picks up all non-zero singular
values, can be obtained by the ERA to estimate the observability and controllability
matrices. The input/output data collected from real world are actually contaminated by
measurement noise, and all singular values may be non-zero. A gap in the logarithmic
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singular value plot may be used to determine the number of dominant singular values.
Equation (20), therefore, can be approximated by balanced realization as

G(0)"CaOb"USVT:U
1
S
1
VT

1
:(U

1
S1@2
1

)(S1@2
1

VT
1
). (21)

The estimation of the observability and controllability matrices in the balanced realization
is

C1 a"U
1
S1@2
1

, O1 b"S1@2
1

VT
1
. (22a,b)

On the basis of the balanced realization, matrix G(1) can be written as

G(1)"C1 aA1 dO1 b"U
1
S1@2
1

A1
d
S1@2
1

VT
1
. (23)

The discrete-time state system matrix is now computed through

A1
d
"S~1@2

1
UT

1
G (1)V

1
S~1@2
1

. (24)

Using the de"nition of ET
l
"[I

l
, 0

l
,2, 0

l
] and ET

r
"[I

r
, 0

r
,2, 0

r
], the estimation of

discrete-time input and output in#uence matrices are

B1
d
"S1@2

1
VT

1
E
r
, C1 "ET

l
U

1
S1@2
1

. (25, 26)

Finally, the direct transmission matrix is estimated by the "rst Markov parameter, i.e.,

D1 "g6
0
. (27)

Once the discrete quadruplet (A1
d
, B1

d
, C1 , D1 ) has been identi"ed, the continuous quadruplet

(A1
c
, B1

c
, C1 , D1 ) can be computed by making use of the zero-order-hold transformation of

equation (14).

4. EXTRACTION OF STRUCTURAL SYSTEM MATRICES

Because the continuous-time Markov parameters contain the dynamic characteristics of
a linear system, they are also invariant with the change of state vector. Although the
continuous-time Markov parameters can be constructed from the continuous quadruplet,
their relations to structural system matrices, input in#uence matrix and output in#uence
matrix for displacement, velocity and acceleration in the case of combined DVA
measurements are still not distinct. In this section, we combine the ideas described in
sections 2 and 3 to develop a method that extracts the structural system matrices using the
invariant characteristic of Markov parameters. The continuous-time Markov parameters
can be reconstructed from the identi"ed quadruplet as follows:

h1
k
"G

D1 , k"0,

C1 A1 k~1
c

B1
c
, k*1.

(28)

If the identi"ed quadruplet has enough accuracy, then the reconstructed Markov
parameters will be equivalent to the theoretical one, i.e., h1 :h

k
. Following the invariant

characteristic of Markov parameters, the relationship between the theoretical and identi"ed
Markov parameters can be written as follows:

h
0
"D"h1

0
"D1 , h

k
"CAk~1

c
B

c
"h1

k
"C1 A1 k~1

c
B1

c
, k*1. (29a,b)
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From equations (4) and (6), the Markov parameters can be represented as

h1
0
"D

"C
a
M~1B

0
, (30a)

h1
1
"CB

"C
v
M~1B

0
!C

a
M~1EM~1B

0
, (30b)

h1
2
"CAB

"C
d
M~1B

0
!C

v
M~1EM~1B

0
#C

a
M~1(EM~1E!K)M~1B

0
, (30c)

h1
3
"CA2B

"!C
d
M~1EM~1B

0
#C

v
M~1(EM~1E!K)M~1B

0

#C
a
M~1(KM~1E!EM~1EM~1E#EM~1K)M~1B

0
, (30d)

h1
4
"CA3B

"C
d
M~1(EM~1E!K)M~1B

0

#C
v
M~1(EM~1K#KM~1E!EM~1EM~1E)M~1B

0

#C
a
M~1(KM~1K!KM~1EM~1E!EM~1EM~1K

!EM~1KM~1E#EM~1EM~1EM~1E)M~1B
0

F (30e)

The relationship between the Markov parameters, structural system matrices (M, E, K),
output in#uence matrices (C

d
, C

v
, C

a
), and the input in#uence matrix B

0
is too complicated

for the solution of the structural system matrices. The identi"ed Markov parameters are not
square matrices when the number of inputs do not have the same number as outputs. The
structural system matrices cannot be solved by equation (30) when the identi"ed Markov
parameters are not square matrices. In order to solve structural system matrices using the
above equations, we assumed temporarily that the number of inputs is equal to the number
of outputs, i.e., the input in#uence matrix B

0
is an identity matrix. Although it is assumed

that B
0
is an identity matrix, the above equations, after post-multiplying the inverse of mass

matrix, can be rewritten as

h1
0
M"C

a
, h1

1
M"C

v
!C

a
M~1E, h1

2
M"C

d
!C

v
M~1E#C

a
M~1(EM~1E!K),

(31a}c)

h1
3
M"!C

d
M~1E#C

v
M~1(EM~1E!K)

#C
a
M~1(KM~1E!EM~1EM~1E#EM~1K), (31d)

h1
4
M"C

d
M~1(EM~1E!K)#C

v
M~1(EM~1K#KM~1E!EM~1EM~1E)

#C
a
M~1(KM~1K!KM~1EM~1E!EM~1EM~1K

!EM~1KM~1E#EM~1EM~1EM~1E)

F (31e)
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The matrix h1
0

in equation (31a) is non-singular in the case where only the acceleration
signals are measured. In the case of mixed measurements, or where only the displacement or
velocity signals is measured, the matrix h1

0
is generally rank de"cient, and the inverse

operation of h1
0

is not available to solve the mass matrix. The output in#uence matrix for
acceleration, C

a
, will be the product of h1

0
and M, and B

0
is essentially an identity matrix.

On substituting C
a
into equation (31b), we have

h1
1
M#h1

0
E"C

v
. (32)

Equations (31a) and (32) clearly show the relationship of the output in#uence matrices for
acceleration and velocity to the structural system matrices and the two lowest Markov
parameters. The relations play a very important role in posterior derivation for solving
these complicated equations. On substituting C

a
"h1

0
M and C

v
"h1

1
M#h1

0
E into

equation (31c), we obtain

h1
2
M#h1

1
E#h1

0
K"C

d
. (33)

The structural system matrices seem to be solved externally by casting the set of
equations (31a), (32) and (33) into a linear matrix equation. In fact, the direct transmission
matrix, D"h

0
"C

a
M~1, is actually either a zero matrix or a rank de"cient matrix

depending on which types of sensors are used in the case of mixed measurements. Therefore,
the linear matrix equation cannot be solved exactly by common inverse operation. Hence,
we can resort to solving an over-determined linear matrix equations by the following
derivations. By substituting the expressions of C

a
, C

v
and C

d
into equations (31d) and (31e),

an additional equation can be obtained as shown below

h1
k
M#h1

k~1
E#h1

k~2
K"0, k*3. (34)

An over-determined linear matrix equation for the estimation of structural system matrices
is now written as

h1
0

0 0

h1
1

h1
0

0

h1
2

h1
1

h1
0

h1
3

h1
2

h1
1

h1
3

h1
2

h1
3

F

M

E

K

"

C
a

C
v

C
d

0

0

0

F

(35)

or in matrix form

G3 X3 "Y3 . (36)

The matrix G3 is a block Toeplitz matrix with non-symmetrical block entities, and each
block entity along each diagonal direction is the same. The block entities, i.e., the Markov
parameters, basically are symmetrical matrices for displacement, velocity or acceleration
measurements only. It is not symmetrical in the case of the mixed measurements. The row
dimension of matrix G3 may be in"nite; hence it is inconvenient for the computation of
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structural system matrices using equation (36). A submatrix of G3 , namely G3
k
3Rn(k`1)]3n is

used in this paper to solve the over-determined system

G3
k
"

h1
0

0 0

h1
1

h1
0

0

h1
2

h1
1

h1
0

h1
3

h1
2

h1
1

F F F

h1
k

h1
k~1

h1
k~2

. (37)

The subscript of G3
k
indicates the subscript of the last entity of the "rst block column in the

block matrix G3
k
. The structural system matrices are computed by making use of the

Moore}Penrose pseudo-inverse of G3
k
as

X3 "

M

E

K

"G3 `
k

Y3
k
, (38)

where Y3
k
is a submatrix of Y3 that has the same block row number as G3

k
. The fundamental

rule for selecting an adequate k in the matrix G3
k
is to transform the matrix into a full rank

matrix. In general, k*4 is suggested for estimating the structural system matrices using
equation (38).

In the case of only one type of measurement, the solution of structural system matrices
can be found from equations (30a)}(31d) as follows:

M< "h1 ~1
j

, E<"!h1 ~1
j

h1
j`1

h1 ~1
j

, K< "h1 ~1
j

(h1
j`1

h1 ~1
j

h1
j`1

!h1
j`2

)h1 ~1
j

, (39a}c)

where j"0 for acceleration, j"1 for velocity, and j"2 for displacement only.
The estimation of structural system matrices from displacement-based Markov

parameters reported in reference [17] is a special case of our results, i.e., the case of j"2.
Once the continuous-time Markov parameters have been estimated from an equivalent
state-space system, the structural system matrices can be estimated from adequate
expressions depending on the types of sensors used in the measurement.

5. NUMERICAL EXAMPLES

In order to illustrate the availability of this proposed method, a lumped mass model with
three d.o.f. was selected as a study case. The parameters of this model shown in Figure 1 are
m

1
"1, m

2
"2, m

3
"3, c

1
"c

4
"c

5
"0)1, c

2
"c

3
"0)2, k

1
"10, k

2
"20 and k

3
"30.

The excitation forces that acted on the 3-d.o.f. are Gaussian white-noise sequences with zero
mean and unit variance. A fourth order Runge}Kutta method was employed to calculate
the displacement, velocity and acceleration response at m

1
, m

2
and m

3
respectively. The

sampling rate of measurement was selected as 5 Hz, and 1024 data points of displacement,
velocity and acceleration responses were picked. The time histories of response of di!erent
sensors at di!erent positions are shwon in Figure 2. The magnitude and change rate of the
time histories of the measured displacement, velocity and acceleration are apparently
di!erent. In order to show the e!ects of noise on the accuracy level of the identi"ed system
matrices of structures and the associated modal parameters, a zero mean white noise was



Figure 1. Three-d.o.f. lumped mass model.

Figure 2. Time history of responses of 3-d.o.f. model to white-noise excitation. (a) acceleration at m
1
; (b) velocity

at m
2
; (c) displacement at m

3
.
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added to the original noise-free response data to simulate the measurement noise of real
world. Five levels of contaminated measurement noise with the r.m.s. value equal to 1, 3, 5,
10 and 20% of the r.m.s. of noise-free response data were taken into consideration. One
hundred runs of Monte Carlo simulation for each noise level were performed to study the
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statistical characteristics of the accuracy level of the identi"ed system matrices and modal
parameters. The relative error of the identi"ed structure parameters is de"ned as

Relative error of QM "
EQ!QM E

2
EQE

2

]100%, (40)

where Q represents the original structure parameters, such as structural system matrices or
modal parameters; Q1 is the identi"ed Q, and EQE

2
is the second norm of Q. The relative

error of the identi"ed structural system matrices in the case of 1, 5 and 20% noise levels for
the 100 runs are shown in Figures 3}5. In these "gures, the horizontal line in each noise
level indicates the average relative error of the 100 runs. Because of the random nature of
Figure 4. Relative error of identi"ed damping matrix for di!erent noise levels. -, 1%; --, 5%; ) ), 20%

Figure 3. Relative error of identi"ed mass matrix for di!erent noise levels. -, 1%; --, 5%; ) ), 20%.



Figure 5. Relative error of identi"ed sti!ness for di!erent noise levels. -, 1%; --, 5%; ) ), 20%.

TABLE 1

Average and standard deviation of the relative errors for the identi,ed mass, damping and
sti+ness matrices at di+erent noise levels

Noise 1% 3% 5% 10% 20%
level

Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std.

Mass 0)59 0)32 2)17 1)43 4)34 3)36 11)12 7)59 25)63 13)83
Damp. 2)82 1)28 8)12 4)25 14)44 6)60 30)28 14)50 54)28 19)68
Sti!. 0)36 0)20 1)86 1)72 4)62 4)73 13)00 11)13 30)96 20)18
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measurement noise, the relative errors of the identi"ed structural system matrices for
di!erent noise levels #uctuate around their average relative error. Table 1 shows the
average and the standard deviation of relative errors of identi"ed structural system matrices
for all noise levels. The average and the standard deviations of relative errors of the
identi"ed structural system matrices are generally increased with the increment of noise
level. The relative error for the identi"ed damping matrix is higher than those of the
identi"ed mass and sti!ness matrices at all noise levels. This also re#ects a fact that the
damping property is more di$cult to be identi"ed precisely than the mass and sti!ness
properties. The error seems to be reasonable in the case of low noise level (1 and 3%), but it
has a rather large value of error at high noise level. For example, the average and standard
deviation of the relative error of identi"ed damping matrix in the case of 20% noise level are
54)28 and 19)68% respectively.

Table 2 shows the true modal parameters of the 3-d.o.f. lumped model. The mean values
and standard deviations of the identi"ed natural frequencies and damping ratio from
the 100 runs are shown in Tables 3 and 4. Figure 6 shows the distribution of average
relative errors of identi"ed modal parameters from the 100 runs versus the di!erent noise
levels. The results show that the average relative errors of the modal parameters are much
lower than that of system matrices. The relative errors are large at high noise level (20%),



TABLE 2

¹rue natural frequencies, damping ratios and normalized mode shapes of 3-d.o.f. lumped mass
model

Mode 1 Mode 2 Mode 3

Natural frequency (Hz) 0)1699 0)7120 1)0537

Damping ratio (%) 1)7626 3)4783 3)7849

0)2761 0)6667 0)6924
Mode shape 0)3983 0)3333 !0)4798

0)4496 !0)3333 0)1417

TABLE 3

¹he average and standard deviation of identi,ed natural frequencies at di+erent noise levels for
3-d.o.f. lumped mass model

Mode 1% 3% 5% 10% 20%

Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 0)1699 5)4e!5 0)1699 1)8e!4 0)1699 2)9e!4 0)1699 5)2e!4 0)1699 1)2e!3
2 0)7120 1)31e!4 0)7120 3)96e!4 0)7121 7)8e!4 0)7120 1)5e!3 0)7118 3)1e!3
3 1)0537 9)3e!5 1)0537 2)9e!4 1)0538 5)0e!4 1)0536 9)4e!4 1)0536 1)8e!3

TABLE 4

¹he average and standard deviation of identi,ed damping ratios at di+erent noise levels for
3-d.o.f. lumped mass model

Mode 1% 3% 5% 10% 20%

Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std.

1 1)7580 3)8e!2 1)7475 1)1e!1 1)7750 1)7e!1 1)7314 3)7e!1 1)8886 8)4e!1
2 3)4779 3)6e!3 3)4763 1)1e!2 3)4841 1)7e!2 3)4771 3)7e!2 3)4926 8)0e!2
3 3)7848 3)1e!3 3)7843 9)1e!3 3)7845 1)7e!2 3)7869 3)1e!2 3)7978 6)1e!2
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but it can be improved by increasing the number of data points. Figure 7 shows the relative
error of the identi"ed natural frequency and damping ratio of the "rst mode in the case of
20% noise level versus the number of data points. The trend of relative error is roughly
decreasing with the increment of number of data points. Figure 8 shows the normalized
mode shape for the true shape and the identi"ed modes for 3, 10 and 20% noise levels. The
results show that the identi"ed mode shapes are in good agreement with the true one. The
correlation between the identi"ed mode shape and the true one can be evaluated by modal
assurance criterion (MAC) [27]. A value of MAC close to 1)0 indicates that the two mode
shapes are approximately parallel. Figure 9 shows the distribution of MAC values in the
100 runs for 1, 5 and 20% noise levels. The MAC values in all three modes are all close
to 1 except in the case of 20% noise level.



Figure 6. Average relative errors of identi"ed modal parameters at di!erent noise levels. (a) natural frequencies;
(b) damping ratios. #, "rst mode; s, second mode; ], third mode.

Figure 7. Relative errors of identi"ed modal parameters versus the number of data points (20% noise level, "rst
mode). ], for natural frequency, s, for damping ratio.
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6. CONCLUSION

This work presented a method to extract the system matrices of structures from
a continuous-time state-space system that is identi"ed from the combined measurement of
displacement, velocity and acceleration responses, as well as the input excitations. By
employing the invariant property of Markov parameters in the continuous-time, the
relationship between the Markov parameters, the structural system matrices and the output
in#uence matrices for displacement, velocity and acceleration has been derived. The
presented method is also valid when only the displacement, velocity or acceleration is



Figure 8. The average of normalized mode shapes at di!erent noise levels.**, 0%; #, 3%; s, 10%; ], 20%.
(a) "rst mode, (b) second mode, (c) third mode.

Figure 9. The distribution of MAC value versus the 100 runs at di!erent noise levels. (a) "rst mode; (b) second
mode; (c) third mode. -, 1%; --, 5%, ) ), 20%.
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measured. In this work, an e$cient method, which combines the ARX model with the ERA,
is employed for identifying the equivalent state-space system. The results of the numerical
example show that the relative errors in the identi"cation of natural frequencies and
damping ratios are considerably lower than the relative errors in the identi"ed structural
system matrices. The numerical results of Monte Carlo simulations show that the presented
method provides feasible and acceptable results.
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